Year 11 AQA GCSE Biology

Revision Checklist

Use this booklet to help you with your revision in preparation for your year 11 Biology examinations.

This is the work that you will have covered by the end of year 11 from the GCSE Syllabus Examination

How can you use this document to help you revise?

By looking at this document you can see the extent of the work that you need to fully cover and revise before you sit your GCSE examinations. This will then help you to track your progress through the year and also plan your revision for end of year examinations. Careful study and use of this document will ensure that you have sufficient time to cover all the work well before the exam. Remember to look back at the work you have done in year 9 as you will be expected to build upon this foundation. Exam questions may include some information from these topics.

BIOLOGY

Cell structure

Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism. These differences in cells are controlled by genes in the nucleus. For an organism to grow, cells must divide by mitosis producing two new identical cells. If cells are isolated at an early stage of growth before they have become too specialised, they can retain their ability to grow into a range of different types of cells. This phenomenon has led to the development of stem cell technology. This is a new branch of medicine that allows doctors to repair damaged organs by growing new tissue from stem cells.

	\odot	\bigcirc	\odot
Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm			
and genetic material enclosed in a nucleus.			
Bacterial cells (prokaryotic cells) are much smaller in comparison.			
They have cytoplasm and a cell membrane surrounded by a cell wall. The			
genetic material is not enclosed in a nucleus. It is a single DNA loop and			
there may be one or more small rings of DNA called plasmids.			
Students should be able to demonstrate an understanding of the scale and			
size of cells and be able to make order of magnitude calculations, including			
the use of standard form.			
Animal and plant cells			
Students should be able to explain how the main sub-cellular structures,			
including the nucleus, cell membranes, mitochondria, chloroplasts in plant			
cells and plasmids in bacterial cells are related to their functions.			
Most animal cells have the following parts:			
• a nucleus, cytoplasm, a cell membrane, mitochondria, ribosomes.			
In addition to the parts found in animal cells, plant cells often have:			
chloroplasts, a permanent vacuole filled with cell sap.	-		
Plant and algal cells also have a cell wall made of cellulose, which			
strengthens the cell.			
Students should be able to use estimations and explain what they			
should be used to judge the relative size or area of sub-cellular structures			
Cell specialisation			
Students should be able to, when provided with appropriate information,			
explain how the structure of different types of cell relate to their function			
in a tissue, an organ or organ system, or the whole organism.			
Cells may be specialised to carry out a particular function:			
 sperm cells, nerve cells and muscle cells in animals 			
root hair cells, xylem and phloem cells in plants			
Cell differentiation			
Students should be able to explain the importance of cell differentiation.			
As an organism develops, cells differentiate to form different types of cells.			

• Most types of animal cell differentiate at an early stage.		
• Many types of plant cells retain the ability to differentiate throughout life.		
In mature animals, cell division is mainly restricted to repair and		
replacement.		
As a cell differentiates it acquires different sub-cellular structures to enable		
it to carry out a certain function. It has become a specialised cell		
Microscopy		
Students should be able to:		
 understand how microscopy techniques have developed over time 		
• explain how electron microscopy has increased understanding of sub-		
cellular structures. Limited to the differences in magnification and		
resolution		
An electron microscope has much higher magnification and resolving		
power than a light microscope. This means that it can be used to study cells		
in much finer detail. This has enabled biologists to see and understand		
many more sub-cellular structures		
Students should be able to carry out calculations involving magnification,		
real size and image size using the formula		
magnification = size of image		
size of real object		
Students should be able to express answers in standard form if appropriate		
Culturing microorganisms	1	
Bacteria multiply by simple cell division (binary fission) as often as once	T	
every 20 minutes if they have enough nutrients and a suitable temperature.		
Bacteria can be grown in a nutrient broth solution or as colonies on an agar		
gel plate.		
Students should be able to describe how to prepare an uncontaminated		
culture using aseptic technique.		
They should be able to explain why:		
 Petri dishes and culture media must be sterilised before use 		
 inoculating loops used to transfer microorganisms to the media must be 		
sterilised by passing them through a flame		
• the lid of the Petri dish should be secured with adhesive tape and stored		
upside down		
 in school and college laboratories, cultures should be incubated at a 	-	
maximum temperature of 25°C.		
Students should be able to calculate cross-sectional areas of colonies or		
clear areas around colonies using πr ² .		
Students should be able to calculate the number of bacteria in a population		
after a certain time if given the mean division time.		
Students should be able to express the answer in standard form.		

Cell division		
Chromosomes		
The nucleus of a cell contains chromosomes made of DNA molecules. Each chromosome carries a large number of genes. In body cells the chromosomes are normally found in pairs		
Mitosis and the cell cycle	 •	
Students should be able to describe the stages of the cell cycle, including mitosis.		
During the cell cycle the genetic material is doubled and then divided into two identical cells		
Before a cell can divide it needs to grow and increase the number of sub- cellular structures such as ribosomes and mitochondria. The DNA replicates to form two copies of each chromosome		
In mitosis one set of chromosomes is pulled to each end of the cell and the nucleus divides.		
Finally the cytoplasm and cell membranes divide to form two identical cells.		
Cell division by mitosis is important in the growth and development of multicellular organisms		
Students should be able to recognise and describe situations in given contexts where mitosis is occurring		
Stem cells		
A stem cell is an undifferentiated cell of an organism which is capable of giving rise to many more cells of the same type, and from which certain other cells can arise from differentiation.		
Students should be able to describe the function of stem cells in embryos, in adult animals and in the meristems in plants		
Stem cells from human embryos can be cloned and made to differentiate into most different types of human cells		
Stem cells from adult bone marrow can form many types of cells including blood cells.		
Meristem tissue in plants can differentiate into any type of plant cell, throughout the life of the plant		
Treatment with stem cells may be able to help conditions such as diabetes and paralysis		
In therapeutic cloning an embryo is produced with the same genes as the patient. Stem cells from the embryo are not rejected by the patient's body so they may be used for medical treatment.		
The use of stem cells has potential risks such as transfer of viral infection, and some people have ethical or religious objections.		
 Stem cells from meristems in plants can be used to produce clones of plants quickly and economically Rare species can be cloned to protect from extinction. Crop plants with special features such as disease resistance can be cloned to produce large numbers of identical plants for farmers. 		
Transport in cells		

Diffusion		
Substances may move into and out of cells across the cell membranes via		
diffusion.		
Diffusion is the spreading out of the particles of any substance in solution,		
or particles of a gas, resulting in a net movement from an area of higher		
concentration to an area of lower concentration.		
Some of the substances transported in and out of cells by diffusion are		
oxygen and carbon dioxide in gas exchange, and of the waste product urea		
from cells into the blood plasma for excretion in the kidney.		
Students should be able to explain how factors affect the rate of diffusion.		
Factors which affect the rate of diffusion are:		
 the difference in concentrations (concentration gradient) 		
• the temperature		
• the surface area of the membrane.		
A single-celled organism has a relatively large surface area to volume ratio. This allows sufficient transport of molecules into and out of the cell to meet		
the needs of the organism.		
Students should be able to calculate and compare surface area to volume		
ratios.		
Students should be able to explain the need for exchange surfaces and a		
transport system in multicellular organisms in terms of surface area to		
volume ratio		
Students should be able to explain how the small intestine and lungs in		
mammals, gills in fish, and the roots and leaves in plants, are adapted for		
exchanging materials.		
In multicellular organisms, surfaces and organ systems are specialised for		
exchanging materials. This is to allow sufficient molecules to be transported		
into and out of cells for the organism's needs. The effectiveness of an		
exchange surface is increased by:		
having a large surface area		
• a membrane that is thin, to provide a short diffusion path		
• (in animals) having an efficient blood supply		
• (in animals, for gaseous exchange) being ventilated		
Osmosis	1	
Water may move across cell membranes via osmosis. Osmosis is the		
diffusion of water from a dilute solution to a concentrated solution through		
a partially permeable membrane.		
Students should be able to:		
 use simple compound measures of rate of water uptake use percentiles 		
 calculate percentage gain and loss of mass of plant tissue 		
Students should be able to plot, draw and interpret appropriate graphs.		
Investigate the effect of a range of concentrations of salt or sugar solutions		
on the mass of plant tissue.		
Active transport		
Active transport moves substances from a more dilute solution to a more		

		•	
concentrated solution (against a concentration gradient). This requires			
energy from respiration.			
Active transport allows mineral ions to be absorbed into plant root hairs			
from very dilute solutions in the soil. Plants require ions for healthy growth.			
It also allows sugar molecules to be absorbed from lower concentrations in			
the gut into the blood which has a higher sugar concentration. Sugar			
molecules are used for cell respiration.			
Students should be able to:			
 describe how substances are transported into and out of cells by 			
diffusion, osmosis and active transport			
 explain the differences between the three processes 			
Organisation			
In this section we will learn about the human digestive system which provide	s the b	ody witl	h
nutrients and the respiratory system that provides it with oxygen and remov	es carbo	on dioxi	de. In
each case they provide dissolved materials that need to be moved quickly an	ound th	e body	in the
blood by the circulatory system. Damage to any of these systems can be deb	ilitating	if not fa	atal.
Although there has been huge progress in surgical techniques, especially with	h regard	d to core	onary
heart disease, many interventions would not be necessary if individuals redu	ced the	ir risks t	through
improved diet and lifestyle. We will also learn how the plant's transport syste	em is de	epender	nt on
environmental conditions to ensure that leaf cells are provided with the wate	er and c	arbon c	lioxide
that they need for photosynthesis			
Principles of organisation			
Cells are the basic building blocks of all living organisms.			
A tissue is a group of cells with a similar structure and function.			
Organs are aggregations of tissues performing specific functions.			
Organs are organised into organ systems, which work together to form			
organisms.			
Plant organ system			
Students should be able to explain how the structures of plant tissues are			
related to their functions.			
Plant tissues include:			
• epidermal tissues			
palisade mesophyll			
• spongy mesophyll			
• xylem and phloem			
 meristem tissue found at the growing tips of shoots and roots. 			
The leaf is a plant organ. Knowledge limited to epidermis, palisade and			
spongy mesophyll, xylem and phloem, and guard cells surrounding stomata.			
Students should be able to explain how the structure of root hair cells,			
xylem and phloem are adapted to their functions.			
Students should be able to explain the effect of changing temperature,			
humidity, air movement and light intensity on the rate of transpiration.			
Students should be able to understand and use simple compound measures			
such as the rate of transpiration.			
The roots, stem and leaves form a plant organ system for transport of			
substances around the plant.			

		-	-
Root hair cells are adapted for the efficient uptake of water by osmosis, and			
mineral ions by active transport.			
Students should be able to describe the process of transpiration and			
translocation, including the structure and function of the stomata.			
Xylem tissue transports water and mineral ions from the roots to the stems			
and leaves. It is composed of hollow tubes strengthened by lignin adapted			
for the transport of water in the transpiration stream.			
The role of stomata and guard cells are to control gas exchange and water			
loss.	ļ		
Phloem tissue transports dissolved sugars from the leaves to the rest of the			
plant for immediate use or storage. The movement of food molecules			
through phloem tissue is called translocation.			
Phloem is composed of tubes of elongated cells. Cell sap can move from			
one phloem cell to the next through pores in the end walls.			
Detailed structure of phloem tissue or the mechanism of transport is not			
required.			
Animal tissues, organs and organ systems			<u>.</u>
The human digestive system			
This section assumes knowledge of the digestive system studied in Key			
Stage 3 science including the structure of the digestive system and the role			
of digestion.			
Students should be able to describe and explain the role of organs in the			
digestive system			
The digestive system is an example of an organ system in which several			
organs work together to digest and absorb food.			
How small intestine is adapted for absorption, including the role of villi			
Students should be able to relate knowledge of enzymes to Metabolism			
(biochemical molecules and their reactions)			
Students should be able to describe the nature of enzyme molecules and			
relate their activity to temperature and pH changes			
Students should be able to carry out rate calculations for chemical			
reactions.			
Enzymes catalyse specific reactions in living organisms due to the shape of			
their active site.			
Students should be able to use the 'lock and key theory' as a simplified			
model to explain enzyme action.			
Students should be able to recall the sites of production and the action of			
amylase, proteases and lipases.			
Students should be able to understand simple word equations but no		1	1
chemical symbol equations are required.			
Digestive enzymes convert food into small soluble molecules that can be		1	
absorbed into the bloodstream.			
Carbohydrases break down carbohydrates to simple sugars.			
Amylase is a carbohydrase which breaks down starch.			
Proteases break down proteins to amino acids.			
Lipases break down lipids (fats) to glycerol and fatty acids			
	L	1	1

The products of digestion are used to build new carbohydrates, lipids and		
proteins. Some glucose is used in respiration		
Bile is made in the liver and stored in the gall bladder. It is alkaline to		
neutralise hydrochloric acid from the stomach. It also emulsifies fat to form		
small droplets which increases the surface area. The alkaline conditions and		
large surface area increase the rate of fat breakdown by lipase	<u> </u>	
Use qualitative reagents to test for a range of carbohydrates, lipids and		
proteins.		
To include: Benedict's test for sugars; iodine test for starch; and Biuret		
reagent for protein.		
Students should use a continuous sampling technique to determine the		
time taken to completely digest a starch solution at a range of pH values.		
Iodine reagent is to be used to test for starch every 30 seconds.		
Temperature must be controlled by use of a water bath or electric heater		
Metabolism		
Students should be able to explain the importance of sugars, amino acids,		
fatty acids and glycerol in the synthesis and breakdown of carbohydrates,		
proteins and lipids.		
Metabolism is the sum of all the reactions in a cell or the body.		
The energy transferred by respiration in cells is used by the organism for		
the continual enzyme controlled processes of metabolism that synthesise		
new molecules.		
Metabolism includes:		
 conversion of glucose to starch, glycogen and cellulose 		
• the formation of lipid molecules from a molecule of glycerol and three		
molecules of fatty acids		
• the use of glucose and nitrate ions to form amino acids which in turn are		
used to synthesise proteins		
respiration		
 breakdown of excess proteins to form urea for excretion. 	I	
	L	

Bioenergetics

In this section we will explore how plants harness the Sun's energy in photosynthesis in order to make food. This process liberates oxygen which has built up over millions of years in the Earth's atmosphere. Both animals and plants use this oxygen to oxidise food in a process called aerobic respiration which transfers the energy that the organism needs to perform its functions. Conversely, anaerobic respiration does not require oxygen to transfer energy. During vigorous exercise the human body is unable to supply the cells with sufficient oxygen and it switches to anaerobic respiration. This process will supply energy but also causes the build-up of lactic acid in muscles which causes fatigue.

Photosynthesis

Photosynthesis is represented by the equation: carbon dioxide + water light glucose + oxygen

Students should recognise the chemical symbols: CO2, H2O, O2 and C6H12O6.		
	+	
Students should be able to describe photosynthesis as an endothermic		
reaction in which energy is transferred from the environment to the		
chloroplasts by light.		
Rate of photosynthesis		
Students should be able to explain the effects of temperature, light intensity,		
carbon dioxide concentration, and the amount of chlorophyll on the rate of		
photosynthesis		
Students should be able to:		
 measure and calculate rates of photosynthesis 		
• extract and interpret graphs of photosynthesis rate involving one limiting		
factor		
• plot and draw appropriate graphs selecting appropriate scale for axes		
• translate information between graphical and numeric form.		
These factors interact and any one of them may be the factor that limits	+	
photosynthesis.		
(HT only) Students should be able to explain graphs of photosynthesis rate		
involving two or three factors and decide which is the limiting factor.	+	
Students should understand and use inverse proportion – the inverse square		
law and light intensity in the context of photosynthesis.		
Limiting factors are important in the economics of enhancing the conditions		
in greenhouses to gain the maximum rate of photosynthesis while still		
maintaining profit		
Investigate the effect of light intensity on the rate of photosynthesis using an		
aquatic organism such as pondweed		
Uses of glucose from photosynthesis		
The glucose produced in photosynthesis may be:		
 used for respiration 		
 converted into insoluble starch for storage 		
 used to produce fat or oil for storage 		
 used to produce cellulose, which strengthens the cell wall 		
• used to produce amino acids for protein synthesis.		
To produce proteins, plants also use nitrate ions that are absorbed from the		
soil.		
Plant diseases can be detected by:	+	
 stunted growth 		
• spots on leaves		
• areas of decay (rot)		
• growths • malformed stems or leaves		
discolouration • the presence of pests.	+	
Identification can be made by:		
reference to a gardening manual or website		
 taking infected plants to a laboratory to identify the pathogen 		
using testing kits that contain monoclonal antibodies.	+	
Plants can be infected by a range of viral, bacterial and fungal pathogens as		
well as by insects.		

Knowledge of plant diseases is restricted to tobacco mosaic virus as a viral disease, black spot as a fungal disease and aphids as insects.		
Plants can be damaged by a range of ion deficiency conditions: • stunted	+	
growth caused by nitrate deficiency • chlorosis caused by magnesium		
deficiency. Knowledge of ions is limited to nitrate ions needed for protein		
synthesis and therefore growth, and magnesium ions needed to make		
chlorophyll.		
Plant defence responses	<u>т г</u>	
Students should be able to describe physical and chemical plant defence		
responses.	<u> </u>	
Physical defence responses to resist invasion of microorganisms.		
Cellulose cell walls.		
• Tough waxy cuticle on leaves.		
Layers of dead cells around stems (bark on trees) which fall off.	<u> </u>	
Chemical plant defence responses.		
Antibacterial chemicals.		
Poisons to deter herbivores.	┥──┤─	
Mechanical adaptations.		
Thorns and hairs deter animals.		
Leaves which droop or curl when touched.		
Mimicry to trick animals.		
Respiration		
Aerobic and anaerobic respiration	<u> </u>	
Students should be able to describe cellular respiration as an exothermic		
reaction which is continuously occurring in living cells.		
The energy transferred supplies all the energy needed for living processes.		
Respiration in cells can take place aerobically (using oxygen) or anaerobically		
(without oxygen), to transfer energy.		
Students should be able to compare the processes of aerobic and anaerobic		
respiration with regard to the need for oxygen, the differing products and the		
relative amounts of energy transferred.		
Organisms need energy for:		
 chemical reactions to build larger molecules 		
• movement		
keeping warm.		
Aerobic respiration is represented by the equation:		
glucose + oxygen carbon dioxide + water		
Students should recognise the chemical symbols: C6H12O6, O2, CO2 and		
H2O.		
Anaerobic respiration in muscles is represented by the equation:		
glucose lactic acid		
As the oxidation of glucose is incomplete in anaerobic respiration much less		
energy is transferred than in aerobic respiration		
Anaerobic respiration in plant and yeast cells is represented by the		
equation:		
glucose ethanol + carbon dioxide		

Anaerobic respiration in yeast cells is called fermentation and has economic			
importance in the manufacture of bread and alcoholic drinks.			
Response to exercise			
During exercise the human body reacts to the increased demand for energy.			
The heart rate, breathing rate and breath volume increase during exercise to			
supply the muscles with more oxygenated blood.			
If insufficient oxygen is supplied anaerobic respiration takes place in muscles.			
The incomplete oxidation of glucose causes a build up of lactic acid and			
creates an oxygen debt. During long periods of vigorous activity muscles			
become fatigued and stop contracting efficiently.			
Blood flowing through the muscles transports the lactic acid to the liver			
where it is converted back into glucose. Oxygen debt is the amount of extra			
oxygen the body needs after exercise to react with the accumulated			
The heart and blood vessels			
Students should know the structure and functioning of the human heart and			
lungs, including how lungs are adapted for gaseous exchange.			
The heart is an organ that pumps blood around the body in a double			
circulatory system.			
The right ventricle pumps blood to the lungs where gas exchange takes place.			
The left ventricle pumps blood around the rest of the body.			
Knowledge of the blood vessels associated with the heart is limited to the			
aorta, vena cava, pulmonary artery, pulmonary vein and coronary arteries.			
Knowledge of the names of the heart valves is not required.			
Knowledge of the lungs is restricted to the trachea, bronchi, alveoli and the			
capillary network surrounding the alveoli.			
The natural resting heart rate is controlled by a group of cells located in the			
right atrium that act as a pacemaker. Artificial pacemakers are electrical			
devices used to correct irregularities in the heart rate.			
The body contains three different types of blood vessel:			
arteries veins			
• capillaries.			
Students should be able to explain how the structure of these vessels relates			
to their functions.			
Students should be able to use simple compound measures such as rate and car	rv out	rate	
calculations for blood flow.	iy out	iace	
Blood			
Blood is a tissue consisting of plasma, in which the red blood cells, white blood	cells an	d nlate	olets
are suspended. Students should know the functions of each of these blood			
components			
Students should be able to recognise different types of blood cells in a			
photograph or diagram, and explain how they are adapted to their functions.			
Coronary heart disease: a non-communicable disease	I		
Students should be able to evaluate the advantages and disadvantages of			
treating cardiovascular diseases by drugs, mechanical devices or transplant.			
In coronary heart disease layers of fatty material build up inside the coronary			
in coronary neart disease layers of fatty material build up inside the coronary			

arteries, narrowing them. This reduces the flow of blood through the	
coronary arteries, resulting in a lack of oxygen for the heart muscle.	
Stents are used to keep the coronary arteries open.	
Statins are widely used to reduce blood cholesterol levels, which slows down	
the rate of fatty material deposit.	
In some people heart valves may become faulty, preventing the valve from	
opening fully, or the heart valve might develop a leak.	
Students should understand the consequences of faulty valves.	
Faulty heart valves can be replaced using biological or mechanical valves.	
In the case of heart failure a donor heart, or heart and lungs can be	
transplanted.	
Artificial hearts are occasionally used to keep patients alive whilst waiting for	
a heart transplant, or to allow the heart to rest as an aid to recovery.	
Health issues	
Students should be able to describe the relationship between health and	
disease and the interactions between different types of disease.	
Health is the state of physical and mental well-being.	
Diseases, both communicable and non-communicable, are major causes of ill	
health. Other factors including diet, stress and life situations may have a	
profound effect on both physical and mental health.	
Different types of disease may interact.	
 Defects in the immune system mean that an individual is more likely to 	
suffer from infectious diseases.	
 Viruses living in cells can be the trigger for cancers. 	
• Immune reactions initially caused by a pathogen can trigger allergies such as	
skin rashes and asthma.	
 Severe physical ill health can lead to depression and other mental illness. 	
Students should be able to translate disease incidence information	
between graphical and numerical forms, construct and interpret	
frequency tables and diagrams, bar charts and histograms, and use	
a scatter diagram to identify a correlation between two variable	
Students should understand the principles of sampling as applied to scientific	
data, including epidemiological data.	
The effect of lifestyle on some non-communicable diseases	
Students should be able to:	
 discuss the human and financial cost of these non-communicable diseases 	
to an individual, a local community, a nation or globally • explain the effect of	
lifestyle factors including diet, alcohol and smoking on the incidence of non-	
communicable diseases at local, national and global levels.	
Risk factors are linked to an increased rate of a disease. They can be:	
 aspects of a person's lifestyle 	
 substances in the person's body or environment. A causal mechanism has 	
been proven for some risk factors, but not in others.	
• The effects of diet, smoking and exercise on cardiovascular disease.	
 Obesity as a risk factor for Type 2 diabetes. 	
 The effect of alcohol on the liver and brain function. 	

 The effect of smoking on lung disease and lung cancer. 			
 The effects of smoking and alcohol on unborn babies. 			
 Carcinogens, including ionising radiation, as risk factors in cancer. 			
Many diseases are caused by the interaction of a number of factors			
Students should be able to understand the principles of sampling as applied			
to scientific data in terms of risk factors			
Students should be able to translate information between graphical and			
numerical forms; and extract and interpret information from charts, graphs			
and tables in terms of risk factors.			
Students should be able to use a scatter diagram to identify a correlation			
between two variables in terms of risk factors.			
Cancer			
Students should be able to describe cancer as the result of changes in cells			
that lead to uncontrolled growth and division.			
Benign tumours are growths of abnormal cells which are contained in one			
area, usually within a membrane. They do not invade other parts of the body.			
Malignant tumour cells are cancers. They invade neighbouring tissues and			
spread to different parts of the body in the blood where they form secondary			
tumours. Scientists have identified lifestyle risk factors for various types of			
cancer.			
There are also genetic risk factors for some cancers.			
Communicable diseases	L I	L	
Students should be able to explain how diseases caused by viruses, bacteria,			
protists and fungi are spread in animals and plants. Students should be able to			
explain how the spread of diseases can be reduced or prevented.			
Pathogens are microorganisms that cause infectious disease.			
Pathogens may be viruses, bacteria, protists or fungi. They may infect plants			
or animals and can be spread by direct contact, by water or by air. Bacteria			
and viruses may reproduce rapidly inside the body.			
Bacteria may produce poisons (toxins) that damage tissues and make us feel			
Bacteria may produce poisons (toxins) that damage tissues and make us feel ill.			
ill.			
ill. Viruses live and reproduce inside cells, causing cell damage.			
ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs. 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs. HIV initially causes a flu-like illness. Unless successfully controlled with 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs. HIV initially causes a flu-like illness. Unless successfully controlled with antiretroviral drugs the virus attacks the body's immune cells. Late stage HIV 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs. HIV initially causes a flu-like illness. Unless successfully controlled with antiretroviral drugs the virus attacks the body's immune cells. Late stage HIV infection, or AIDS, occurs when the body's immune system becomes so badly 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs. HIV initially causes a flu-like illness. Unless successfully controlled with antiretroviral drugs the virus attacks the body's immune cells. Late stage HIV infection, or AIDS, occurs when the body's immune system becomes so badly damaged it can no longer deal with other infections or cancers. HIV is spread 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs. HIV initially causes a flu-like illness. Unless successfully controlled with antiretroviral drugs the virus attacks the body's immune cells. Late stage HIV infection, or AIDS, occurs when the body's immune system becomes so badly damaged it can no longer deal with other infections or cancers. HIV is spread by sexual contact or exchange of body fluids such as blood which occurs when 			
 ill. Viruses live and reproduce inside cells, causing cell damage. Viral diseases Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are vaccinated against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs. HIV initially causes a flu-like illness. Unless successfully controlled with antiretroviral drugs the virus attacks the body's immune cells. Late stage HIV infection, or AIDS, occurs when the body's immune system becomes so badly damaged it can no longer deal with other infections or cancers. HIV is spread by sexual contact or exchange of body fluids such as blood which occurs when drug users share needles. 			

of photosynthesis.		
Bacterial diseases		
Salmonella food poisoning is spread by bacteria ingested in food, or on food		
prepared in unhygienic conditions. In the UK, poultry are vaccinated against		
Salmonella to control the spread. Fever, abdominal cramps, vomiting and		
diarrhoea are caused by the bacteria and the toxins they secrete.		
Gonorrhoea is a sexually transmitted disease (STD) with symptoms of a thick		
yellow or green discharge from the vagina or penis and pain on urinating. It is		
caused by a bacterium and was easily treated with the antibiotic penicillin		
until many resistant strains appeared. Gonorrhoea is spread by sexual		
contact. The spread can be controlled by treatment with antibiotics or the use		
of a barrier method of contraception such as a condom.		
Fungal diseases	<u>г г</u>	
Rose black spot is a fungal disease where purple or black spots develop on		
leaves, which often turn yellow and drop early. It affects the growth of the		
plant as photosynthesis is reduced. It is spread in the environment by water		
or wind. Rose black spot can be treated by using fungicides and/or removing		
and destroying the affected leaves		
Protist disease	. <u> </u>	
The pathogens that cause malaria are protists. The malarial protist has a life		
cycle that includes the mosquito. Malaria causes recurrent episodes of fever		
and can be fatal. The spread of malaria is controlled by preventing the		
vectors, mosquitos, from breeding and by using mosquito nets to avoid being		
bitten.		
Human defence system		
Students should be able to describe the non-specific defence systems of the		
human body against pathogens, including the:skin		
• nose		
• trachea and bronchi		
• stomach		
Students should be able to explain the role of the immune system in the		
defence against disease.		
If a pathogen enters the body the immune system tries to destroy the		
pathogen.		
White blood cells help to defend against pathogens by:		
• phagocytosis		
 antibody production 		
• antitoxin production.		
Vaccination		
Students should be able to explain how vaccination will prevent illness in an		
individual, and how the spread of pathogens can be reduced by immunising a		
large proportion of the population.		
Vaccination involves introducing small quantities of dead or inactive forms of		
a pathogen into the body to stimulate the white blood cells to produce		
antibodies. If the same pathogen re-enters the body the white blood cells		

respond quickly to produce the correct antibodies, preventing infection		
Students do not need to know details of vaccination schedules and side		
effects associated with specific vaccines.		
Antibiotics and painkillers		
Students should be able to explain the use of antibiotics and other medicines		
in treating disease		
Antibiotics, such as penicillin, are medicines that help to cure bacterial		
disease by killing infective bacteria inside the body. It is important that		
specific bacteria should be treated by specific antibiotics		
The use of antibiotics has greatly reduced deaths from infectious bacterial		
diseases. However, the emergence of strains resistant to antibiotics is of great		
concern.		
Antibiotics cannot kill viral pathogens.		
Painkillers and other medicines are used to treat the symptoms of disease but		
do not kill pathogens.		
It is difficult to develop drugs that kill viruses without also damaging the		
body's tissues		
Discovery and development of drug		
Students should be able to describe the process of discovery and		
development of potential new medicines, including preclinical and clinical		
testing.		
Traditionally drugs were extracted from plants and microorganisms.		
 The heart drug digitalis originates from foxgloves. 		
 The painkiller aspirin originates from willow. 		
• Penicillin was discovered by Alexander Fleming from the Penicillium mould.		
Most new drugs are synthesised by chemists in the pharmaceutical industry.		
However, the starting point may still be a chemical extracted from a plant		
New medical drugs have to be tested and trialled before being used to check		
that they are safe and effective.		
New drugs are extensively tested for toxicity, efficacy and dose.		
Preclinical testing is done in a laboratory using cells, tissues and live animals.		
Clinical trials use healthy volunteers and patients.		
• Very low doses of the drug are given at the start of the clinical trial.		
• If the drug is found to be safe, further clinical trials are carried out to find		
the optimum dose for the drug.		
 In double blind trials, some patients are given a placebo. 		
Monoclonal antibodies		
Producing monoclonal antibodies		
Students should be able to describe how monoclonal antibodies are		
produced.		
Monoclonal antibodies are produced from a single clone of cells. The		
antibodies are specific to one binding site on one protein antigen and so are		
able to target a specific chemical or specific cells in the body.		
They are produced by stimulating mouse lymphocytes to make a particular		
antibody. The lymphocytes are combined with a particular kind of tumour cell		
to make a cell called a hybridoma cell. The hybridoma cell can both divide and		

make the antibody. Single hybridoma cells are cloned to produce many			
identical cells that all produce the same antibody. A large amount of the			
antibody can be collected and purified			
Uses of monoclonal antibodies			
Students should be able to describe some of the ways in which monoclonal			
antibodies can be used. Some examples include:			
 For diagnosis such as in pregnancy tests. 			
 In laboratories to measure the levels of hormones and other chemicals in 			
blood, or to detect pathogens. • In research to locate or identify specific			
molecules in a cell or tissue by binding to them with a fluorescent dye.			
• To treat some diseases: for cancer the monoclonal antibody can be bound			
to a radioactive substance, a toxic drug or a chemical which stops cells			
growing and dividing. It delivers the substance to the cancer cells without			
harming other cells in the body.			
Students are not expected to recall any specific tests or treatments but given			
appropriate information they should be able to explain how they work			
Monoclonal antibodies create more side effects than expected. They are not			
yet as widely used as everyone hoped when they were first developed.			
Homeostasis and response			
Cells in the body can only survive within narrow physical and chemical limits. The	ney req	uire a	
constant temperature and pH as well as a constant supply of dissolved food and	l water	. In or	der
to do this the body requires control systems that constantly monitor and adjust	the co	mposit	tion
of the blood and tissues. These control systems include receptors which sense of	hange	s and	
effectors that bring about changes. In this section we will explore the structure	and fui	nction	of
the memory events and here it are built a bart fact where the second of the second second second second second			•.
the nervous system and how it can bring about fast responses. We will also exp	lore th	e horm	
system which usually brings about much slower changes. Hormonal coordinatio			ional
	n is pa	rticula	ional rly
system which usually brings about much slower changes. Hormonal coordinatio	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordinatio important in reproduction since it controls the menstrual cycle. An understandi	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandin hormones in reproduction has allowed scientists to develop not only contracep	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandin hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility.	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandin hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandin hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions.	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions.	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration •	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses.	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include:	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include: • cells called receptors, which detect stimuli (changes in the environment)	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandi hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include: • cells called receptors, which detect stimuli (changes in the environment) • coordination centres (such as the brain, spinal cord and pancreas) that	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include: • cells called receptors, which detect stimuli (changes in the environment) • coordination centres (such as the brain, spinal cord and pancreas) that receive and process information from receptors	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandi hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include: • cells called receptors, which detect stimuli (changes in the environment) • coordination centres (such as the brain, spinal cord and pancreas) that receive and process information from receptors • effectors, muscles or glands, which bring about responses which restore	n is pa ng of tl	rticulai ne role	ional rly of
system which usually brings about much slower changes. Hormonal coordination important in reproduction since it controls the menstrual cycle. An understandit hormones in reproduction has allowed scientists to develop not only contracep drugs which can increase fertility. Homeostasis Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include: • cells called receptors, which detect stimuli (changes in the environment) • coordination centres (such as the brain, spinal cord and pancreas) that receive and process information from receptors	n is pa ng of tl	rticulai ne role	ional rly of

Structure and function	
Students should be able to explain how the structure of the nervous system is	
adapted to its functions. The nervous system enables humans to react to their	
surroundings and to coordinate their behaviour.	
Information from receptors passes along cells (neurones) as electrical	
impulses to the central nervous system (CNS).	
The CNS is the brain and spinal cord.	
Stimulus receptor coordinator effector response	
Students should be able to explain how the various structures in a reflex arc –	
including the sensory neurone, synapse, relay neurone and motor neurone –	
relate to their function.	
Students should understand why reflex actions are important. Reflex actions	
are automatic and rapid; they do not involve the conscious part of the brain.	
Students should be able to extract and interpret data from graphs, charts and	
tables, about the functioning of the nervous system	
Students should be able to translate information about reaction times	
between numerical and graphical forms.	
The brain	<u> </u>
The brain controls complex behaviour. It is made of billions of interconnected	
neurones and has different regions that carry out different functions.	
Students should be able to identify the cerebral cortex, cerebellum and	
medulla on a diagram of the brain, and describe their functions.	
Students should be able to explain some of the difficulties of investigating	
brain function and treating brain damage and disease.	
Neuroscientists have been able to map the regions of the brain to particular	
functions by studying patients with brain damage, electrically stimulating	
different parts of the brain and using MRI scanning techniques. The	
complexity and delicacy of the brain makes investigating and treating brain	
disorders very difficult.	
The eye	
Students should be able to relate the structures of the eye to their functions.	
This includes: • accommodation to focus on near or distant objects •	
adaptation to dim light. The eye is a sense organ containing receptors	
sensitive to light intensity and colour.	
Students should be able to identify the following structures on a diagram of	
the eye and explain how their structure is related to their function: • retina •	
optic nerve • sclera • cornea • iris • ciliary muscles • suspensory ligaments.	
Accommodation is the process of changing the shape of the lens to focus on	
near or distant objects.	
To focus on a near object: • the ciliary muscles contract • the suspensory	
ligaments loosen • the lens is then thicker and refracts light rays strongly.	
To focus on a distant object: • the ciliary muscles relax • the suspensory	
ligaments are pulled tight • the lens is then pulled thin and only slightly	
refracts light rays.	
Two common defects of the eyes are myopia (short sightedness) and	
hyperopia (long sightedness) in which rays of light do not focus on the retina.	
Typeropia (iong signee anos) in which rays of light do not rocus of the felling.	

Generally these defects are treated with spectacle lenses which refract the	
light rays so that they do focus on the retina.	
New technologies now include hard and soft contact lenses, laser surgery to	
change the shape of the cornea and a replacement lens in the eye.	
Students should be able to interpret ray diagrams, showing these two	
common defects of the eye and demonstrate how spectacle lenses correct	
them.	
Control of body temperature	
Body temperature is monitored and controlled by the thermoregulatory	
centre in the brain.	
The thermoregulatory centre contains receptors sensitive to the temperature	
of the blood.	
The skin contains temperature receptors and sends nervous impulses to the	
thermoregulatory centre.	
If the body temperature is too high, blood vessels dilate (vasodilation) and	
sweat is produced from the sweat glands. Both these mechanisms cause a	
transfer of energy from the skin to the environment.	
If the body temperature is too low, blood vessels constrict (vasoconstriction),	
sweating stops and skeletal muscles contract (shiver).	
Students should be able to explain how these mechanisms lower or raise	
body temperature in a given context	
Plant hormones	
Control and coordination	
Plants produce hormones to coordinate and control growth and responses to	
light (phototropism) and gravity (gravitropism or geotropism).	
Unequal distributions of auxin cause unequal growth rates in plant roots and	
shoots.	
Gibborolling are important in initiating cood cormination	
Gibberellins are important in initiating seed germination.	
Ethene controls cell division and ripening of fruits	
Ethene controls cell division and ripening of fruits	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture.	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture.	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport.	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport. Gibberellins can be used to: • end seed dormancy • promote flowering •	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport. Gibberellins can be used to: • end seed dormancy • promote flowering • increase fruit size.	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport. Gibberellins can be used to: • end seed dormancy • promote flowering • increase fruit size. Hormonal coordination in humans	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport. Gibberellins can be used to: • end seed dormancy • promote flowering • increase fruit size. Hormonal coordination in humans Human endocrine system	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport. Gibberellins can be used to: • end seed dormancy • promote flowering • increase fruit size. Hormonal coordination in humans Human endocrine system Students should be able to describe the principles of hormonal coordination	
Ethene controls cell division and ripening of fruits The mechanisms of how gibberellins and ethene work are not required. Use of plant hormones Students should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used: • as weed killers • as rooting powders • for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport. Gibberellins can be used to: • end seed dormancy • promote flowering • increase fruit size. Hormonal coordination in humans Human endocrine system	

hormones directly into the bloodstream. The blood carries the hormone to a		
target organ where it produces an effect.		
Compared to the nervous system the effects are slower but act for longer.		
The pituitary gland in the brain is a 'master gland' which secretes several		
hormones into the blood in response to body conditions. These hormones in		
turn act on other glands to stimulate other hormones to be released to bring		
about effects		
Students should be able to identify the position of the following on a diagram		
of the human body: • pituitary gland • pancreas • thyroid • adrenal gland •		
ovary • testes.		
Control of blood glucose concentration	<u> </u>	
Blood glucose concentration is monitored and controlled by the pancreas. If		
the blood glucose concentration is too high, the pancreas produces the		
hormone insulin that causes glucose to move from the blood into the cells.		
In liver and muscle cells excess glucose is converted to glycogen for storage.		
Students should be able to explain how insulin controls blood glucose (sugar)		
levels in the body.		
Type 1 diabetes is a disorder in which the pancreas fails to produce sufficient		
insulin. It is characterised by uncontrolled high blood glucose levels and is		
normally treated with insulin injections.		
In Type 2 diabetes the body cells no longer respond to insulin produced by the		
pancreas. A carbohydrate controlled diet and an exercise regime are common		
treatments.		
Obesity is a risk factor for Type 2 diabetes. Students should be able to		
compare Type 1 and Type 2 diabetes and explain how they can be treated.		
Students should be able to extract information and interpret data from		
graphs that show the effect of insulin in blood glucose levels in both people		
with diabetes and people without diabetes		
If the blood glucose concentration is too low, the pancreas produces the		
hormone glucagon that causes glycogen to be converted into glucose and		
released into the blood.		
Students should be able to explain how glucagon interacts with insulin in a		
negative feedback cycle to control blood glucose (sugar) levels in the body.		
Maintaining water and nitrogen balance in the body		
Students should be able to explain the effect on cells of osmotic changes in		
body fluids.		
Water leaves the body via the lungs during exhalation.		
Water, ions and urea are lost from the skin in sweat.		
There is no control over water, ion or urea loss by the lungs or skin.		
Excess water, ions and urea are removed via the kidneys in the urine. If body		
cells lose or gain too much water by osmosis they do not function efficiently		
The digestion of proteins from the diet results in excess amino acids which		
need to be excreted safely.		
In the liver these amino acids are deaminated to form ammonia. Ammonia is		
toxic and so it is immediately converted to urea for safe excretion.		
Students should be able to describe the function of kidneys in maintaining the		

water balance of the body. The kidneys produce urine by filtration of the	
blood and selective reabsorption of useful substances such as glucose, some	
ions and water.	
Knowledge of other parts of the urinary system, the structure of the kidney	
and the structure of a nephron is not required.	
Students should be able to translate tables and bar charts of glucose, ions and	
urea before and after filtration.	
Students should be able to describe the effect of ADH on the permeability of	
the kidney tubules.	
The water level in the body is controlled by the hormone ADH which acts on	
the kidney tubules.	
ADH is released by the pituitary gland when the blood is too concentrated	
and it causes more water to be reabsorbed back into the blood from the	
kidney tubules.	
This is controlled by negative feedback.	
People who suffer from kidney failure may be treated by organ transplant or	
by using kidney dialysis. Students should know the basic principles of dialysis.	
Students should be able to explain the roles of thyroxine and adrenaline in	
the body.	
Adrenaline is produced by the adrenal glands in times of fear or stress. It	
increases the heart rate and boosts the delivery of oxygen and glucose to the	
brain and muscles, preparing the body for 'flight or fight'.	
Thyroxine from the thyroid gland stimulates the basal metabolic rate. It plays	
an important role in growth and dovelopment	
an important role in growth and development.	
Thyroxine levels are controlled by negative feedback.	
Thyroxine levels are controlled by negative feedback.	
Thyroxine levels are controlled by negative feedback. Hormones in human reproduction	
Thyroxine levels are controlled by negative feedback.Hormones in human reproductionHuman reproduction, including the menstrual cycle.	
Thyroxine levels are controlled by negative feedback.Hormones in human reproductionHuman reproduction, including the menstrual cycle.During puberty reproductive hormones cause secondary sex characteristics to	
Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop.	
Thyroxine levels are controlled by negative feedback.Hormones in human reproductionHuman reproduction, including the menstrual cycle.During puberty reproductive hormones cause secondary sex characteristics to develop.Oestrogen is the main female reproductive hormone produced in the ovary.	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. Luteinising hormone (LH) stimulates the release of the egg. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. Luteinising hormone (LH) stimulates the release of the egg. Oestrogen and progesterone are involved in maintaining the uterus lining. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. Luteinising hormone (LH) stimulates the release of the egg. Oestrogen and progesterone are involved in maintaining the uterus lining. Students should be able to explain the interactions of FSH, oestrogen, LH and 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. Luteinising hormone (LH) stimulates the release of the egg. Oestrogen and progesterone are involved in maintaining the uterus lining. Students should be able to explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. Luteinising hormone (LH) stimulates the release of the egg. Oestrogen and progesterone are involved in maintaining the uterus lining. Students should be able to explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. Luteinising hormone (LH) stimulates the release of the egg. Oestrogen and progesterone are involved in maintaining the uterus lining. Students should be able to explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle. Students should be able to extract and interpret data from graphs showing hormone levels during the menstrual cycle. Students should be able to evaluate the different hormonal and nonhormonal methods of contraception. 	
 Thyroxine levels are controlled by negative feedback. Hormones in human reproduction Human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman. Follicle stimulating hormone (FSH) causes maturation of an egg in the ovary. Luteinising hormone (LH) stimulates the release of the egg. Oestrogen and progesterone are involved in maintaining the uterus lining. Students should be able to explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle. Students should be able to extract and interpret data from graphs showing hormone levels during the menstrual cycle. Students should be able to evaluate the different hormonal and non- 	

These include:			
• oral contraceptives that contain hormones to inhibit FSH production so that			
no eggs mature			
• injection, implant or skin patch of slow release progesterone to inhibit the			
maturation and release of eggs for a number of months or years			
• barrier methods such as condoms and diaphragms which prevent the sperm			
reaching an egg			
 intrauterine devices which prevent the implantation of an embryo or 			
release a hormone			
 spermicidal agents which kill or disable sperm 			
 abstaining from intercourse when an egg may be in the oviduct 			
 surgical methods of male and female sterilisation. 			
Students should be able to explain the use of hormones in modern			
reproductive technologies to treat infertility.			
This includes giving FSH and LH in a 'fertility drug' to a woman. She may then			
become pregnant in the normal way.			
In Vitro Fertilisation (IVF) treatment.			
 IVF involves giving a mother FSH and LH to stimulate the maturation of 			
several eggs.			
• The eggs are collected from the mother and fertilised by sperm from the			
father in the laboratory.			
The fertilised eggs develop into embryos.			
• At the stage when they are tiny balls of cells, one or two embryos are			
inserted into the mother's uterus (womb).			
Although fertility treatment gives a woman the chance to have a baby of her			
own:			
 it is very emotionally and physically stressful 			
 the success rates are not high 			
 it can lead to multiple births which are a risk to both the babies and the 			
mother.			
Inheritance, variation and evolution			
In this section we will discover how the number of chromosomes are halved du	ring me	eiosis a	nd
then combined with new genes from the sexual partner to produce unique offs	pring. (Gene	
mutations occur continuously and on rare occasions can affect the functioning	of the a	animal	or
plant. These mutations may be damaging and lead to a number of genetic disor	ders or	r death	ı .
Very rarely a new mutation can be beneficial and consequently, lead to increase	ed fitne	ess in t	he
individual. Variation generated by mutations and sexual reproduction is the bas	is for n	atural	
selection; this is how species evolve. An understanding of these processes has a			
to intervene through selective breeding to produce livestock with favoured cha	racteris	stics. C	nce

produce larger numbers of identical individuals all carrying the favourable characteristic. Scientists have now discovered how to take genes from one species and introduce them in to the genome of another by a process called genetic engineering. In spite of the huge potential benefits that this technology can offer, genetic modification still remains highly controversial.

new varieties of plants or animals have been produced it is possible to clone individuals to

Reproduction

Students should understand that meiosis leads to non-identical cells being

formed while mitosis leads to identical cells being formed.			
Sexual reproduction involves the joining (fusion) of male and female gametes:			
• sperm and egg cells in animals			
• pollen and egg cells in flowering plants.			
In sexual reproduction there is mixing of genetic information which leads to			
variety in the offspring. The formation of gametes involves meiosis.			
Asexual reproduction involves only one parent and no fusion of gametes.			
There is no mixing of genetic information. This leads to genetically identical			
offspring (clones). Only mitosis is involved.			
Students should be able to explain how meiosis halves the number of			
chromosomes in gametes and fertilisation restores the full number of			
chromosomes.			
Knowledge of the stages of meiosis is not required			
Cells in reproductive organs divide by meiosis to form gametes.			
When a cell divides to form gametes:			
 copies of the genetic information are made 			
 the cell divides twice to form four gametes, each with a single set of 			
chromosomes			
 all gametes are genetically different from each other. 			
Gametes join at fertilisation to restore the normal number of chromosomes.			
The new cell divides by mitosis. The number of cells increases. As the embryo			
develops cells differentiate.			
Advantages of sexual reproduction:			
 produces variation in the offspring 			
 if the environment changes variation gives a survival advantage by natural 			
selection			
• natural selection can be speeded up by humans in selective breeding to			
increase food production.			
Advantages of asexual reproduction:			
• only one parent needed			
 more time and energy efficient as do not need to find a mate 			
faster than sexual reproduction			
• many identical offspring can be produced when conditions are favourable.	<u> </u>		
Some organisms reproduce by both methods depending on circumstances.			
• Malarial parasites reproduce asexually in the human host, but sexually in			
the mosquito.			
• Many fungi reproduce asexually by spores but also reproduce sexually to			
give variation.Many plants produce seeds sexually, but also reproduce asexually by			
runners such as strawberry plants, or bulb division such as daffodils.			
Knowledge of reproduction in organisms is restricted to those mentioned.			
Students are expected to be able to explain the advantages and			
disadvantages of asexual and sexual reproduction for any organism if given			
appropriate information.			
DNA and the genome	<u>I</u>		
	<u> </u>		
Students should be able to describe the structure of DNA and define genome.	L		

The genetic material in the nucleus of a cell is composed of a chemical called		
DNA. DNA is a polymer made up of two strands forming a double helix. The		
DNA is contained in structures called chromosomes.		
A gene is a small section of DNA on a chromosome. Each gene codes for a		
particular sequence of amino acids, to make a specific protein. The genome of an organism is the entire genetic material of that organism.		
The whole human genome has now been studied and this will have great		
importance for medicine in the future.		
Students should be able to discuss the importance of understanding the		
human genome.		
This is limited to the:	1	
 search for genes linked to different types of disease 	1	
 understanding and treatment of inherited disorders 		
• use in tracing human migration patterns from the past		
Students should be able to describe DNA as a polymer made from four different nucleotides. Each nucleotide consists of a common sugar and		
phosphate group with one of four different bases attached to the sugar.	1	
DNA contains four bases, A, C, G and T.		
A sequence of three bases is the code for a particular amino acid.		
The order of bases controls the order in which amino acids are assembled to		
produce a particular protein.		
The long strands of DNA consist of alternating sugar and phosphate sections.		
Attached to each sugar is one of the four bases.		
The DNA polymer is made up of repeating nucleotide units.		
Students should be able to:	1	
 recall a simple description of protein synthesis a synthesis complex how the structure of DNA effects the protein mode 		
 explain simply how the structure of DNA affects the protein made describe how genetic variants may influence phenotype: 	1	
a) in coding DNA by altering the activity of a protein:		
b) in noncoding DNA by altering how genes are expressed.	1	
(HT only) In the complementary strands a C is always linked to a G on the		
opposite strand and a T to an A.	1	
(HT only) Students are not expected to know or understand the structure of		
mRNA, tRNA, or the detailed structure of amino acids or proteins.		
(HT only) Students should be able to explain how a change in DNA structure		
may result in a change in the protein synthesised by a gene.		
(HT only) Proteins are synthesised on ribosomes, according to a template.		
Carrier molecules bring specific amino acids to add to the growing protein chain in the correct order.		
(HT only) When the protein chain is complete it folds up to form a unique		
shape. This unique shape enables the proteins to do their job as enzymes,		
hormones or forming structures in the body such as collagen.		
(HT only) Mutations occur continuously. Most do not alter the protein, or only		
alter it slightly so that its appearance or function is not changed.		
(HT only) A few mutations code for an altered protein with a different shape.		
An enzyme may no longer fit the substrate binding site or a structural protein		
may lose its strength.		

(HT only) Not all parts of DNA code for proteins. Non-coding parts of DNA can	<u> </u>	
switch genes on and off, so variations in these areas of DNA may affect how		
genes are expressed.		
Genetic inheritance		
Students should be able to explain the terms:		
• gamete		
chromosome		
• gene		
• allele		
• dominant		
recessive		
 homozygous 		
 heterozygous 		
• genotype		
• phenotype.		
Some characteristics are controlled by a single gene, such as: fur colour in		
mice; and red-green colour blindness in humans. Each gene may have		
different forms called alleles.		
The alleles present, or genotype, operate at a molecular level to develop		
characteristics that can be expressed as a phenotype.		
A dominant allele is always expressed, even if only one copy is present. A		
recessive allele is only expressed if two copies are present (therefore no		
dominant allele present).		
If the two alleles present are the same the organism is homozygous for that		
trait, but if the alleles are different they are heterozygous.		
Most characteristics are a result of multiple genes interacting, rather than a		
single gene.		
Students should be able to understand the concept of probability in		
predicting the results of a single gene cross, but recall that most phenotype		
features are the result of multiple genes rather than single gene inheritance.		
Students should be able to use direct proportion and simple ratios to express		
the outcome of a genetic cross.		
Students should be able to complete a Punnett square diagram and extract		
and interpret information from genetic crosses and family trees.		
(HT only) Students should be able to construct a genetic cross by Punnett		
square diagram and use it to make predictions using the theory of probability.		
Some disorders are inherited. These disorders are caused by the inheritance		
of certain alleles.		
• Polydactyly (having extra fingers or toes) is caused by a dominant allele.		
• Cystic fibrosis (a disorder of cell membranes) is caused by a recessive allele.		
Students should make informed judgements about the economic, social and		
ethical issues concerning embryo screening, given appropriate information.		
Ordinary human body cells contain 23 pairs of chromosomes.		
22 pairs control characteristics only, but one of the pairs carries the genes		
that determine sex.		
 In females the sex chromosomes are the same (XX). 		

a in males the chromosomes are different (VV)	
• In males the chromosomes are different (XY).	
Students should to be able to carry out a genetic cross to show sex	
inheritance.	
Students should understand and use direct proportion and simple ratios in	
genetic crosses.	
Variation and evolution	
Students should be able to describe simply how the genome and its	
interaction with the environment influence the development of the	
phenotype of an organism.	
Differences in the characteristics of individuals in a population is called	
variation and may be due to differences in:	
 the genes they have inherited (genetic causes) 	
 the conditions in which they have developed (environmental causes) 	
 a combination of genes and the environment. 	
Students should be able to:	
• state that there is usually extensive genetic variation within a population of	
a species	
• recall that all variants arise from mutations and that: most have no effect on	
the phenotype; some influence phenotype; very few determine phenotype.	
Mutations occur continuously. Very rarely a mutation will lead to a new	
phenotype. If the new phenotype is suited to an environmental change it can	
lead to a relatively rapid change in the species.	
Students should be able to describe evolution as a change in the inherited	
characteristics of a population over time through a process of natural	
selection which may result in the formation of a new species.	
The theory of evolution by natural selection states that all species of living	
things have evolved from simple life forms that first developed more than	
three billion years ago.	
Students should be able to explain how evolution occurs through natural	
selection of variants that give rise to phenotypes best suited to their	
environment.	
If two populations of one species become so different in phenotype that they	
can no longer interbreed to produce fertile offspring they have formed two	
new species.	
Students should be able to explain the impact of selective breeding of food	
plants and domesticated animals.	
Selective breeding (artificial selection) is the process by which humans breed	
plants and animals for particular genetic characteristics. Humans have been	
doing this for thousands of years since they first bred food crops from wild	
plants and domesticated animals.	
Selective breeding involves choosing parents with the desired characteristic	
from a mixed population. They are bred together.	
From the offspring those with the desired characteristic are bred together.	
This continues over many generations until all the offspring show the desired	
characteristic.	
The characteristic can be chosen for usefulness or appearance:	

• Disease resistance in food crops.	
Animals which produce more meat or milk.	
 Domestic dogs with a gentle nature. 	
Large or unusual flowers.	
Selective breeding can lead to 'inbreeding' where some breeds are	
particularly prone to disease or inherited defects	
Genetic engineering	
Students should be able to describe genetic engineering as a process which	
involves modifying the genome of an organism by introducing a gene from	
another organism to give a desired characteristic.	
Plant crops have been genetically engineered to be resistant to diseases or to	
produce bigger better fruits.	
Bacterial cells have been genetically engineered to produce useful substances	
such as human insulin to treat diabetes.	
Students should be able to explain the potential benefits and risks of genetic	
engineering in agriculture and in medicine and that some people have	
objections.	
In genetic engineering, genes from the chromosomes of humans and other	
organisms can be 'cut out' and transferred to cells of other organisms.	
Crops that have had their genes modified in this way are called genetically	
modified (GM) crops. GM crops include ones that are resistant to insect	
attack or to herbicides. GM crops generally show increased yields.	
Concerns about GM crops include the effect on populations of wild flowers	
and insects. Some people feel the effects of eating GM crops on human	
health have not been fully explored.	
Modern medical research is exploring the possibility of genetic modification	
to overcome some inherited disorders.	
(HT only) Students should be able to describe the main steps in the process of	
genetic engineering.	
 enzymes are used to isolate the required gene; this gene is 	
inserted into a vector, usually a bacterial plasmid or a virus	
 the vector is used to insert the gene into the required cells 	
• genes are transferred to the cells of animals, plants or microorganisms at an	
early stage in their development so that they develop with desired	
characteristics.	
Tissue culture: using small groups of cells from part of a plant to grow	
identical new plants. This is important for preserving rare plant species or	
commercially in nurseries.	
Cuttings: an older, but simple, method used by gardeners to produce many	
identical new plants from a parent plant.	
Embryo transplants: splitting apart cells from a developing animal embryo	
before they become specialised, then transplanting the identical embryos into	
host mothers.	
Adult cell cloning:	
 The nucleus is removed from an unfertilised egg cell. 	
• The nucleus from an adult body cell, such as a skin cell, is inserted into the	

egg cell.		
 An electric shock stimulates the egg cell to divide to form an embryo. 		
 These embryo cells contain the same genetic information as the adult skin 		
cell.		
 When the embryo has developed into a ball of cells, it is inserted into the 		
womb of an adult female to continue its development		
Theory of evolution		
Charles Darwin, as a result of observations on a round the world expedition,		
backed by years of experimentation and discussion and linked to developing		
knowledge of geology and fossils, proposed the theory of evolution by natural		
selection.		
 Individual organisms within a particular species show a wide range of 		
variation for a characteristic.		
 Individuals with characteristics most suited to the environment are more 		
likely to survive to breed successfully.		
• The characteristics that have enabled these individuals to survive are then		
passed on to the next generation.		
Darwin published his ideas in On the Origin of Species (1859).		
There was much controversy surrounding these revolutionary new ideas.		
The theory of evolution by natural selection was only gradually accepted		
because:		
 the theory challenged the idea that God made all the animals and plants 		
that live on Earth		
 there was insufficient evidence at the time the theory was published to 		
convince many scientists		
 the mechanism of inheritance and variation was not known until 50 years 		
after the theory was published.		
Other theories, including that of Jean-Baptiste Lamarck, are based mainly on		
the idea that changes that occur in an organism during its lifetime can be		
inherited. We now know that in the vast majority of cases this type of		
inheritance cannot occur.		
A study of creationism is not required.		
Students should be able to:		
 describe the work of Darwin and Wallace in the development of the theory 		
of evolution by natural selection		
 explain the impact of these ideas on biology. 		
Alfred Russel Wallace independently proposed the theory of evolution by		
natural selection. He published joint writings with Darwin in 1858 which		
prompted Darwin to publish On the Origin of Species (1859) the following		
year.		
Wallace worked worldwide gathering evidence for evolutionary theory. He is		
best known for his work on warning colouration in animals and his theory of		
speciation.		
Alfred Wallace did much pioneering work on speciation but more evidence		
over time has led to our current understanding of the theory of speciation.		
Students should be able to describe the steps which give rise to new species.		

Students should be able to:			
 describe the development of our understanding of genetics 			
including the work of Mendel			
• understand why the importance of Mendel's discovery was not recognised			
until after his death.			
In the mid-19th Century Gregor Mendel carried out breeding experiments on			
plants. One of his observations was that the inheritance of each characteristic			
is determined by 'units' that are passed on to descendants unchanged.	<u> </u>		
In the late 19th Century behaviour of chromosomes during cell division was			
observed.			
In the early 20th Century it was observed that chromosomes and Mendel's			
'units' behaved in similar ways. This led to the idea that the 'units', now called			
genes, were located on chromosomes.			
In the mid-20th Century the structure of DNA was determined and the			
mechanism of gene function worked out.			
This scientific work by many scientists led to the gene theory being			
developed			
	<u> </u>		
Students should be able to describe the evidence for evolution including			
fossils and antibiotic resistance in bacteria.			
The theory of evolution by natural selection is now widely accepted.			
Evidence for Darwin's theory is now available as it has been shown that			
characteristics are passed on to offspring in genes. There is further evidence			
in the fossil record and the knowledge of how resistance to antibiotics evolves			
in bacteria.			
Fossils are the 'remains' of organisms from millions of years ago, which are			
found in rocks.			
Fossils may be formed:			
 from parts of organisms that have not decayed because one or more of the 			
conditions needed for decay are absent			
when parts of the organism are replaced by minerals as they decay			
• as preserved traces of organisms, such as footprints, burrows and rootlet			
traces.			
Many early forms of life were soft-bodied, which means that they have left			
few traces behind. What traces there were have been mainly destroyed by			
geological activity. This is why scientists cannot be certain about how life			
began on Earth.			
We can learn from fossils how much or how little different organisms have			
changed as life developed on Earth.			
Students should be able to extract and interpret information from charts,	 		
•			
graphs and tables such as evolutionary trees.	┢───┼		
Extinctions occur when there are no remaining individuals of a species still			
alive.			
Students should be able to describe factors which may contribute to the			
extinction of a species.			
Bacteria can evolve rapidly because they reproduce at a fast rate.			
Mutations of bacterial pathogens produce new strains. Some strains might be			
resistant to antibiotics, and so are not killed. They survive and reproduce, so			
	L	I	

the population of the resistant strain rises. The resistant strain will then		
spread because people are not immune to it and there is no effective		
treatment		
MRSA is resistant to antibiotics.		
To reduce the rate of development of antibiotic resistant strains:		
• doctors should not prescribe antibiotics inappropriately, such as treating		
non-serious or viral infections		
• patients should complete their course of antibiotics so all bacteria are killed		
and none survive to mutate and form resistant strains		
• the agricultural use of antibiotics should be restricted.		
The development of new antibiotics is costly and slow. It is unlikely to keep up		
with the emergence of new resistant strains.	<u> </u>	
Classification of living organisms		
Traditionally living things have been classified into groups depending on their		
structure and characteristics in a system developed by Carl Linnaeus.		
Linnaeus classified living things into kingdom, phylum, class, order, family,		
genus and species. Organisms are named by the binomial system of genus		
and species.		
Students should be able to use information given to show understanding of		
the Linnaean system.		
Students should be able to describe the impact of developments in biology on		
classification systems.		
As evidence of internal structures became more developed due to		
improvements in microscopes, and the understanding of biochemical		
processes progressed, new models of classification were proposed.		
Due to evidence available from chemical analysis there is now a 'three-		
domain system' developed by Carl Woese. In this system organisms are		
divided into:		
 Archaea (primitive bacteria usually living in extreme 		
environments)		
• Bacteria (true bacteria)		
 Eukaryota (which includes protists, fungi, plants and animals). 		
Evolutionary trees are a method used by scientists to show how they believe		
organisms are related. They use current classification data for living organisms		
and fossil data for extinct organisms.		
Adaptations, interdependence and competition		
Students should be able to describe:		
 different levels of organisation in an ecosystem from individual 		
organisms to the whole ecosystem		
• the importance of interdependence and competition in a community.		
Students should be able to, when provided with appropriate information:		
Suggest the factors for which organisms are competing in a given habitat		
Suggest how organisms are adapted to the conditions in which they live.		
An ecosystem is the interaction of a community of living organisms (biotic)		
with the non-living (abiotic) parts of their environment		
To survive and reproduce, organisms require a supply of materials from their		
······································	<u> </u>	

an una single and from the other lining even investigated	<u>г</u>	
surroundings and from the other living organisms there.	+	
Plants in a community or habitat often compete with each other for light and		
space, and for water and mineral ions from the soil.		
Animals often compete with each other for food, mates and territory.		
Within a community each species depends on other species for food, shelter,		
pollination, seed dispersal etc. If one species is removed it can affect the		
whole community. This is called interdependence. A stable community is one		
where all the species and environmental factors are in balance so that		
population sizes remain fairly constant	<u> </u>	
Students should be able to extract and interpret information from charts,		
graphs and tables relating to the interaction of organisms within a community		
Abiotic factors		
Students should be able to explain how a change in an abiotic factor would		
affect a given community given appropriate data or context.		
Abiotic (non-living) factors which can affect a community are:		
 light intensity 		
• temperature		
moisture levels		
 soil pH and mineral content 		
 wind intensity and direction 		
 carbon dioxide levels for plants 		
 oxygen levels for aquatic animals 		
Students should be able to extract and interpret information from charts,		
graphs and tables relating to the effect of abiotic factors on organisms within		
a community		
Biotic factors		
Students should be able to explain how a change in a biotic factor might		
affect a given community given appropriate data or context.		
Biotic (living) factors which can affect a community are:		
 availability of food 		
 new predators arriving 		
 new pathogens 		
 one species outcompeting another so the numbers are no longer sufficient 		
to breed.		
Students should be able to extract and interpret information from charts,		
graphs and tables relating to the effect of biotic factors on organisms within a		
community.		
Adaptations		
Students should be able to explain how organisms are adapted to live in their		
natural environment, given appropriate information.		
Organisms have features (adaptations) that enable them to survive in the		
conditions in which they normally live. These adaptations may be structural,		
behavioural or functional		
Some organisms live in environments that are very extreme, such as at high		
temperature, pressure, or salt concentration. These organisms are called		
extremophiles. Bacteria living in deep sea vents are extremophiles		
	<u> </u>	I

Organisation of an ecosystem		
Students should understand that photosynthetic organisms are the producers		
of biomass for life on Earth.		
Feeding relationships within a community can be represented by food chains.		
All food chains begin with a producer which synthesises molecules. This is		
usually a green plant or alga which makes glucose by photosynthesis.		
A range of experimental methods using transects and quadrats are used by		
ecologists to determine the distribution and abundance of species in an		
ecosystem.		
In relation to abundance of organisms students should be able to:		
• understand the terms mean, mode and median		
calculate arithmetic means		
 plot and draw appropriate graphs selecting appropriate scales for axes. 		
Producers are eaten by primary consumers, which in turn may be eaten by		
secondary consumers and then tertiary consumers.		
Consumers that kill and eat other animals are predators, and those eaten are		
prey. In a stable community the numbers of predators and prey rise and fall in		
cycles.		
Students should be able to interpret graphs used to model these cycles.		
How materials are cycled		
 recall that many different materials cycle through the abiotic and biotic 		
components of an ecosystem		
• explain the importance of the carbon and water cycles to living organisms.		
All materials in the living world are recycled to provide the building blocks for		
future organisms		
The carbon cycle returns carbon from organisms to the atmosphere as carbon		
dioxide to be used by plants in photosynthesis.		
The water cycle provides fresh water for plants and animals on land before		
draining into the seas. Water is continuously evaporated and precipitated.		
Students should be able to explain the role of microorganisms in cycling		
materials through an ecosystem by returning carbon to the atmosphere as		
carbon dioxide and mineral ions to the soil.		
Decomposition		
Students should be able to explain how temperature, water and		
availability of oxygen affect the rate of decay of biological material		
Students should be able to:		
 calculate rate changes in the decay of biological material 		
 translate information between numerical and graphical form 		
plot and draw graphs selecting appropriate scales for the axes.		
Gardeners and farmers try to provide optimum conditions for rapid decay of		
waste biological material. The compost produced is used as a natural fertiliser		
for growing garden plants or crops.	\vdash	
Anaerobic decay produces methane gas. Biogas generators can be used to		
produce methane gas as a fuel.	\mid	
Investigate the effect of temperature on the rate of decay of fresh milk by		
measuring pH change.		

Impact of environmental change		
Students should be able to evaluate the impact of environmental changes on		
the distribution of species in an ecosystem given appropriate information.		
Environmental changes affect the distribution of species in an ecosystem.		
These changes include:		
temperature		
• availability of water		
 composition of atmospheric gases. 		
The changes may be seasonal, geographic or caused by human interaction		
Trophic levels in an ecosystem		
Students should be able to describe the differences between the trophic		
levels of organisms within an ecosystem.		
Trophic levels can be represented by numbers, starting at level 1 with plants		
and algae. Further trophic levels are numbered subsequently according to		
how far the organism is along the food chain.		
Level 1: Plants and algae make their own food and are called producers.		
Level 2: Herbivores eat plants/algae and are called primary consumers.		
Level 3: Carnivores that eat herbivores are called secondary consumers.		
Level 4: Carnivores that eat other carnivores are called tertiary consumers.		
Apex predators are carnivores with no predators.		
Decomposers break down dead plant and animal matter by secreting		
enzymes into the environment. Small soluble food molecules then diffuse into		
the microorganism.		
Pyramids of biomass can be constructed to		
represent the relative amount of biomass in Level 4 each		
level of a food chain. Trophic level 1 is		
at the bottom of the pyramid.		
Students should be able to construct accurate pyramids of biomass from		
appropriate data.		
Transfer of biomass		
Students should be able to:		
 describe pyramids of biomass 		
 explain how biomass is lost between the different trophic levels. 		
Producers are mostly plants and algae which transfer about 1% of the incident		
energy from light for photosynthesis		
Only approximately 10% of the biomass from each trophic level is transferred		
to the level above it.		
Losses of biomass are due to:		
 not all the ingested material is absorbed, some is egested as faeces 		
 some absorbed material is lost as waste, such as carbon dioxide and 		
water in respiration and water and urea in urine.		
• Large amounts of glucose are used in respiration.		
Students should be able to calculate the efficiency of biomass transfers		
between trophic levels by percentages or fractions of mass.		
Students should be able to explain how this affects the number of organisms		
at each trophic level.		

Biodiversity and the effect of human interaction on ecosystems	
Biodiversity is the variety of all the different species of organisms on earth, or	
within an ecosystem.	
A great biodiversity ensures the stability of ecosystems by reducing the	
dependence of one species on another for food, shelter and the maintenance	
of the physical environment.	
The future of the human species on Earth relies on us maintaining a good	
level of biodiversity. Many human activities are reducing and only recently	
have measures been taken to try to stop this reduction.	
Rapid growth in the human population and an increase in the standard of	
living mean that increasingly more resources are used and more waste is	
produced. Unless waste and chemical materials are properly handled, more	
pollution will be caused.	
Pollution can occur:	
 in water, from sewage, fertiliser or toxic chemicals 	
• in air, from smoke and acidic gases	
• on land, from landfill and from toxic chemicals.	
Pollution kills plants and animals which can reduce biodiversity.	
Humans reduce the amount of land available for other animals and plants by	
building, quarrying, farming and dumping waste.	
The destruction of peat bogs, and other areas of peat to produce garden	
compost, reduces the area of this habitat and thus the variety of different	
plant, animal and microorganism species that live there (biodiversity).	
The decay or burning of the peat releases carbon dioxide into the	
atmosphere.	
Large-scale deforestation in tropical areas has occurred to:	
 provide land for cattle and rice fields 	
 grow crops for biofuels 	
Students should be able to describe some of the biological consequences of	
global warming.	
Levels of carbon dioxide and methane in the atmosphere are increasing, and	
contribute to 'global warming'.	
Students should be able to describe both positive and negative human	
interactions in an ecosystem and explain their impact on biodiversity.	
Scientists and concerned citizens have put in place programmes to reduce the	
negative effects of humans on ecosystems and biodiversity.	
These include:	
 breeding programmes for endangered species 	
 protection and regeneration of rare habitats 	
 reintroduction of field margins and hedgerows in agricultural areas where 	
farmers grow only one type of crop	
 reduction of deforestation and carbon dioxide emissions by some 	
governments	
 recycling resources rather than dumping waste in landfill. 	
Factors affecting food security	
Students should be able to describe some of the biological factors affecting	

levels of food security.		
Food security is having enough food to feed a population.		
Biological factors which are threatening food security include:		
• the increasing birth rate has threatened food security in some countries		
• changing diets in developed countries means scarce food resources are		
transported around the world		
 new pests and pathogens that affect farming 		
• environmental changes that affect food production, such as widespread		
famine occurring in some countries if rains fail		
• the cost of agricultural inputs		
• conflicts that have arisen in some parts of the world which affect the		
availability of water or food.		
Sustainable methods must be found to feed all people on Earth.		
Farming techniques		
The efficiency of food production can be improved by restricting energy		
transfer from food animals to the environment. This can be done by limiting		
their movement and by controlling the temperature of their surroundings.		
Some animals are fed high protein foods to increase growth.		
Fish stocks in the oceans are declining. It is important to maintain fish stocks		
at a level where breeding continues or certain species may disappear		
altogether in some areas.		
Control of net size and the introduction of fishing quotas play important roles		
in conservation of fish stocks at a sustainable level.		
Students should be able to describe and explain some possible		
biotechnical and agricultural solutions, including genetic modification, to the		
demands of the growing human population.		
Modern biotechnology techniques enable large quantities of microorganisms		
to be cultured for food.		
The fungus Fusarium is useful for producing mycoprotein, a protein rich food		
suitable for vegetarians. The fungus is grown on glucose syrup, in aerobic		
conditions, and the biomass is harvested and purified.	\mid	
A genetically modified bacterium produces human insulin. When harvested		
and purified this is used to treat people with diabetes.		
GM crops could provide more food or food with an improved nutritional value		
such as golden rice.		